Cancer Survival in Florida 1999-2003

or Why Rates are Harder Than Counts

Anders Alexandersson

Florida Cancer Data System

- 1. Introduction
- 2. Data Management
- 3. Survival analysis
- 4. Reporting

Introduction

Early survival analysis used counts

Counts are easy

"5 ants are more than 4 elephants", Swedish children TV.

Average ratio = 62.5%

Ratio of averages = 67%

The order of calculation produces different results.

G. Udny Yule (1934)

Death (Mortality) rates can be either an average ratio or a ratio of averages.

Pohar Perme et al. (2012)

Net survival is the average ratio of overall and population survival.

Relative survival ratio is the ratio of averages of overall and population survival.

Survival analysis is time-to-event analysis.

The focus is on net survival in a relative framework.

It is reproducible research using Stata.

Data science = data management + statistical analysis + programming

Data Management

Check for unique identifiers

- 1. isid Patient_Id_Number_N20 Sequence_Number_Central_N380
- 2. Run the SAS program "CalculateSurvivalTimeInMonths.sas"
- 3. Rename variables to your liking
- 4. isid pid_20 record_order

Create the analysis dataset

- 1. Create new variables such as FCDS site group, ICSS weights
- 2. Specify exclusions, e.g., omit children
- 3. Review the data
- 4. Create population mortality file from Human Mortality Database

Survival analysis

Analysis time t is time at risk:

$$t = \frac{time - origin}{scale}$$

Examples are years or months since diagnosis of cancer.

Survival time *T* is the time until a failure event. Examples are years or months since diagnosis of cancer until death.

The **survival function** *S*(*t*) is the probability of surviving beyond t, the probability that the survival time T is larger than the specific time t:

$$S(t) = P(T > t)$$

Net survival	
Net probability of death = due to cancer	Probability of death in a hypothetical world where the cancer under study is the only possible cause of death
Crude survival	
Crude probability of death due to cancer	Probability of death in the = real world where you may die of other causes before the cancer kills you

Crude and net survival distinguish between two causes of death: death due to cancer and death due to other causes.

Overall (a.k.a. observed or all-cause) survival, and relative survival ratio do NOT make this distinction.

Crude and net survival can be estimated in the cause-specific or relative framework.

Survival analysis approaches and recommended FCDS usage

Cancer registries often prefer net survival (ignores competing risks) in a relative framework (does not require cause of death).

The Pohar Perme estimator corrects for deaths due to other causes.

FCDS has *continuous survival time* but birth month and birth day are not releasable. This suggests Pohar Perme estimation using *life tables*.

The user-written Stata command stnet[3] is designed for this.

1) Declare data to be survival-time data:

- . use doh if site_10group==1, clear
- . stset surv_year, failure(vital_1760==0) id(pid_20)

2) Look at the output. Fix any problems.

3) Use the **stnet** command:

```
stnet using popmort9913 ///
if inrange(dx_year,1999,2003) [iw=icss1], ///
mergeby(_year sex _age) breaks(0(0.083333333)10) ///
diagdate(date_dx) birthdate(dob) standstrata(agegr) ///
savstand(agestand__NS1, replace)
```

- . use agestand__NS1, clear
- . list if inlist(end,1,5,10), noobs

start	end	cns	secns	locns	upcns
.9167	1	0.5047	0.0024	0.5000	0.5093
4.917	5	0.2090	0.0021	0.2048	0.2132
9.917	10	0.1534	0.0024	0.1488	0.1581

Reporting

texdoc creates dynamic reports in LaTeX.

tabout creates publication-quality summary tables.

Net survival by cancer site, Dx 1999-2003

Cancer	1-year	5-year	10-year
Lung & Bronchus	50.5	20.9	15.3
Prostate	100.6	101.1	103.9
Cervix	86.4	65.7	61.1

Source: FCDS 2017 Monograph[1]

Net survival of lung cancer by stage, Dx 1999-2003

	1-year	5-year	10-year
Age Standardized Total	50.5	20.9	15.3
Sex			
Male	46.6	18.0	13.2
Female	55.2	24.4	18.0
Race			

Source: FCDS 2017 Monograph[1]

Read the FCDS 2017 Monograph[1] and the Technical Report[2]. ^(C)

References

- [1] A. Alexandersson. Cancer survival in florida 1999-2003 with 10-year follow-up. FCDS Monograph, 2017.
- [2] A. Alexandersson. Survival analysis of the florida cancer data system: A data science project using stata. FCDS Technical Report, 2017.
- [3] E. Coviello, P. Dickman, K. Seppä, and A. Pokhrel. Estimating net survival using a life-table approach. *Stata Journal*, 15(1):173–185, 2015.